摘要:Tetrad correlations were obtained historically for Gaussian distributions when tasks are designed to measure an ability or attitude so that a single unobserved variable may generate the observed, linearly increasing dependences among the tasks. We connect such generating processes to a particular type of directed graph, the star graph, and to the notion of traceable regressions. Tetrad correlation conditions for the existence of a single latent variable are derived. These are needed for positive dependences not only in joint Gaussian but also in joint binary distributions. Three applications with binary items are given.
关键词:Directed star graph;factor analysis;graphical Markov models;item response models;latent class models;traceable re gression.