首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Varying coefficient models having different smoothing variables with randomly censored data
  • 本地全文:下载
  • 作者:Seong J. Yang ; Anouar El Ghouch ; Ingrid Van Keilegom
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:1
  • 页码:226-252
  • DOI:10.1214/14-EJS882
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The varying coefficient model is a useful alternative to the classical linear model, since the former model is much richer and more flexible than the latter. We propose estimators of the coefficient functions for the varying coefficient model in the case where different coefficient functions depend on different covariates and the response is subject to random right censoring. Since our model has an additive structure and requires multivariate smoothing we employ a smooth backfitting technique, that is known to be an effective way to avoid “the curse of dimensionality” in structured nonparametric models. The estimators are based on synthetic data obtained by an unbiased transformation. The asymptotic normality of the estimators is established, a simulation study illustrates the reliability of our estimators, and the estimation procedure is applied to data on drug abuse.
国家哲学社会科学文献中心版权所有