首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Asymptotic optimality of a multivariate version of the generalized cross validation in adaptive smoothing splines
  • 本地全文:下载
  • 作者:Heeyoung Kim ; Xiaoming Huo
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:1
  • 页码:159-183
  • DOI:10.1214/14-EJS879
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider an adaptive smoothing spline with a piecewise-constant penalty function $\lambda(x)$, in which a univariate smoothing parameter $\lambda$ in the classic smoothing spline is converted into an adaptive multivariate parameter $\boldsymbol{\lambda}$. Choosing the optimal value of $\boldsymbol{\lambda}$ is critical for obtaining desirable estimates. We propose to choose $\boldsymbol{\lambda}$ by minimizing a multivariate version of the generalized cross validation function; the resulting estimator is shown to be consistent and asymptotically optimal under some general conditions—i.e., the counterparts of the nice asymptotic properties of the generalized cross validation in the ordinary smoothing spline are still provable. This provides theoretical justification of adopting the multivariate version of the generalized cross validation principle in adaptive smoothing splines.
国家哲学社会科学文献中心版权所有