首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Berry-Esseen bounds for estimating undirected graphs
  • 本地全文:下载
  • 作者:Larry Wasserman ; Mladen Kolar ; Alessandro Rinaldo
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:1
  • 页码:1188-1224
  • DOI:10.1214/14-EJS928
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the problem of providing nonparametric confidence guarantees — with finite sample Berry-Esseen bounds — for undirected graphs under weak assumptions. We do not assume sparsity or incoherence. We allow the dimension $D$ to increase with the sample size $n$. First, we prove lower bounds that show that if we want accurate inferences with weak assumptions then $D$ must be less than $n$. In that case, we show that methods based on Normal approximations and on the bootstrap lead to valid inferences and we provide new Berry-Esseen bounds on the accuracy of the Normal approximation and the bootstrap. When the dimension is large relative to sample size, accurate inferences for graphs under weak assumptions are not possible. Instead we propose to estimate something less demanding than the entire partial correlation graph. In particular, we consider: cluster graphs, restricted partial correlation graphs and correlation graphs.
  • 关键词:Graphical models;high dimensional inference.
国家哲学社会科学文献中心版权所有