首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Analysis of proteomics data: Phase amplitude separation using an extended Fisher-Rao metric
  • 本地全文:下载
  • 作者:J. Derek Tucker ; Wei Wu ; Anuj Srivastava
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:1724-1733
  • DOI:10.1214/14-EJS900B
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the problem of alignment and classification of proteomics data, that is described in Koch et al. [4], using the Extended Fisher-Rao (EFR) framework introduced in [6]. We demonstrate this framework by separating amplitude and phase components of functional data from patients having therapeutic treatments for Acute Myeloid Leukemia (AML). Then, using individual functional principal component analysis, for both the phase and amplitude components [8], we obtain bases for principal subspaces and model the data by imposing probability models on principal coefficients. Lastly, using the distances calculated from individual components, we demonstrate a successful discrimination between responders and non-responders to treatment for AML.
  • 关键词:Amplitude variability;function principal com ponent analysis;functional data analysis;phase variability.
国家哲学社会科学文献中心版权所有