首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Bounding the maximum of dependent random variables
  • 本地全文:下载
  • 作者:J. A. Hartigan
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:3126-3140
  • DOI:10.1214/14-EJS974
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Let $M_{n be the maximum of $n$ unit Gaussian variables $X_{1},\ldots,X_{n with correlation matrix having minimum eigenvalue $\lambda_{n. Then \[M_{n}\ge\lambda_{n}\sqrt{2\log n}+o_{p}(1).\] As an application, the log likelihood ratio statistic testing for the presence of two components in a 1-dimensional exponential family mixture, with one component known, is shown to be at least $\frac{1} {2}\log\log n(1+o_{p}(n))$ under the null hypothesis that there is only one component.
  • 关键词:Maxima of gaussian processes;likelihood ratio test;exponential family mixtures.
国家哲学社会科学文献中心版权所有