首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Adaptive and minimax estimation of the cumulative distribution function given a functional covariate
  • 本地全文:下载
  • 作者:Gaëlle Chagny ; Angelina Roche
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:2352-2404
  • DOI:10.1214/14-EJS956
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the nonparametric kernel estimation of the conditional cumulative distribution function given a functional covariate. Given the bias-variance trade-off of the risk, we first propose a totally data-driven bandwidth selection mechanism in the spirit of the recent Goldenshluger-Lepski method and of model selection tools. The resulting estimator is shown to be adaptive and minimax optimal: we establish nonasymptotic risk bounds and compute rates of convergence under various assumptions on the decay of the small ball probability of the functional variable. We also prove lower bounds. Both pointwise and integrated criteria are considered. Finally, the choice of the norm or semi-norm involved in the definition of the estimator is also discussed, as well as the projection of the data on finite dimensional subspaces. Numerical results illustrate the method.
国家哲学社会科学文献中心版权所有