首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Data-driven shrinkage of the spectral density matrix of a high-dimensional time series
  • 本地全文:下载
  • 作者:Mark Fiecas ; Rainer von Sachs
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:2975-3003
  • DOI:10.1214/14-EJS977
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Time series data obtained from neurophysiological signals is often high-dimensional and the length of the time series is often short relative to the number of dimensions. Thus, it is difficult or sometimes impossible to compute statistics that are based on the spectral density matrix because estimates of these matrices are often numerically unstable. In this work, we discuss the importance of regularization for spectral analysis of high-dimensional time series and propose shrinkage estimation for estimating high-dimensional spectral density matrices. We use and develop the multivariate Time-frequency Toggle (TFT) bootstrap procedure for multivariate time series to estimate the shrinkage parameters, and show that the multivariate TFT bootstrap is theoretically valid. We show via simulations and an fMRI data set that failure to regularize the estimates of the spectral density matrix can yield unstable statistics, and that this can be alleviated by shrinkage estimation.
  • 关键词:Bootstrap;high-dimensional time series;shrink age estimation;spectral analysis.
国家哲学社会科学文献中心版权所有