首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On clustering procedures and nonparametric mixture estimation
  • 本地全文:下载
  • 作者:Stéphane Auray ; Nicolas Klutchnikoff ; Laurent Rouvière
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:266-297
  • DOI:10.1214/15-EJS995
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This paper deals with nonparametric estimation of conditional densities in mixture models in the case when additional covariates are available. The proposed approach consists of performing a preliminary clustering algorithm on the additional covariates to guess the mixture component of each observation. Conditional densities of the mixture model are then estimated using kernel density estimates applied separately to each cluster. We investigate the expected $L_{1-error of the resulting estimates and derive optimal rates of convergence over classical nonparametric density classes provided the clustering method is accurate. Performances of clustering algorithms are measured by the maximal misclassification error. We obtain upper bounds of this quantity for a single linkage hierarchical clustering algorithm. Lastly, applications of the proposed method to mixture models involving electricity distribution data and simulated data are presented.
  • 关键词:Nonparametric estimation;mixture models;clus tering.
国家哲学社会科学文献中心版权所有