首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:High-dimensional inference in misspecified linear models
  • 本地全文:下载
  • 作者:Peter Bühlmann ; Sara van de Geer
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:1449-1473
  • DOI:10.1214/15-EJS1041
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider high-dimensional inference when the assumed linear model is misspecified. We describe some correct interpretations and corresponding sufficient assumptions for valid asymptotic inference of the model parameters, which still have a useful meaning when the model is misspecified. We largely focus on the de-sparsified Lasso procedure but we also indicate some implications for (multiple) sample splitting techniques. In view of available methods and software, our results contribute to robustness considerations with respect to model misspecification.
国家哲学社会科学文献中心版权所有