首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Adaptive Laguerre density estimation for mixed Poisson models
  • 本地全文:下载
  • 作者:Fabienne Comte ; Valentine Genon-Catalot
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:1113-1149
  • DOI:10.1214/15-EJS1028
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, we consider the observation of $n$ i.i.d. mixed Poisson processes with random intensity having an unknown density $f$ on $\mathbb{R}^{+}$. For fixed observation time $T$, we propose a nonparametric adaptive strategy to estimate $f$. We use an appropriate Laguerre basis to build adaptive projection estimators. Non-asymptotic upper bounds of the $\mathbb{L}^{2}$-integrated risk are obtained and a lower bound is provided, which proves the optimality of the estimator. For large $T$, the variance of the previous method increases, therefore we propose another adaptive strategy. The procedures are illustrated on simulated data.
国家哲学社会科学文献中心版权所有