首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Bayesian approach for noisy matrix completion: Optimal rate under general sampling distribution
  • 本地全文:下载
  • 作者:The Tien Mai ; Pierre Alquier
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:823-841
  • DOI:10.1214/15-EJS1020
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Bayesian methods for low-rank matrix completion with noise have been shown to be very efficient computationally [3, 18, 19, 24, 28]. While the behaviour of penalized minimization methods is well understood both from the theoretical and computational points of view (see [7, 9, 16, 23] among others) in this problem, the theoretical optimality of Bayesian estimators have not been explored yet. In this paper, we propose a Bayesian estimator for matrix completion under general sampling distribution. We also provide an oracle inequality for this estimator. This inequality proves that, whatever the rank of the matrix to be estimated, our estimator reaches the minimax-optimal rate of convergence (up to a logarithmic factor). We end the paper with a short simulation study.
国家哲学社会科学文献中心版权所有