首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A significance test for covariates in nonparametric regression
  • 本地全文:下载
  • 作者:Pascal Lavergne ; Samuel Maistre ; Valentin Patilea
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:643-678
  • DOI:10.1214/15-EJS1005
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider testing the significance of a subset of covariates in a nonparametric regression. These covariates can be continuous and/or discrete. We propose a new kernel-based test that smoothes only over the covariates appearing under the null hypothesis, so that the curse of dimensionality is mitigated. The test statistic is asymptotically pivotal and the rate of which the test detects local alternatives depends only on the dimension of the covariates under the null hypothesis. We show the validity of wild bootstrap for the test. In small samples, our test is competitive compared to existing procedures.
国家哲学社会科学文献中心版权所有