首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Statistical properties of convex clustering
  • 本地全文:下载
  • 作者:Kean Ming Tan ; Daniela Witten
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:2
  • 页码:2324-2347
  • DOI:10.1214/15-EJS1074
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and $k$-means clustering. In addition, we derive the range of the tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimator of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to some traditional clustering methods in simulation studies.
  • 关键词:Degrees of freedom;fusion penalty;hierarchical clustering;k-means;prediction error;single linkage
国家哲学社会科学文献中心版权所有