首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Adaptive Bayesian credible sets in regression with a Gaussian process prior
  • 本地全文:下载
  • 作者:Suzanne Sniekers ; Aad van der Vaart
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:2
  • 页码:2475-2527
  • DOI:10.1214/15-EJS1078
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We investigate two empirical Bayes methods and a hierarchical Bayes method for adapting the scale of a Gaussian process prior in a nonparametric regression model. We show that all methods lead to a posterior contraction rate that adapts to the smoothness of the true regression function. Furthermore, we show that the corresponding credible sets cover the true regression function whenever this function satisfies a certain extrapolation condition. This condition depends on the specific method, but is implied by a condition of self-similarity. The latter condition is shown to be satisfied with probability one under the prior distribution.
  • 关键词:Credible set;coverage;uncertainty quantifica tion.
国家哲学社会科学文献中心版权所有