摘要:Gaussian concentration graphical models are one of the most popular models for sparse covariance estimation with high-dimensional data. In recent years, much research has gone into development of methods which facilitate Bayesian inference for these models under the standard $G$-Wishart prior. However, convergence properties of the resulting posteriors are not completely understood, particularly in high-dimensional settings. In this paper, we derive high-dimensional posterior convergence rates for the class of decomposable concentration graphical models. A key initial step which facilitates our analysis is transformation to the Cholesky factor of the inverse covariance matrix. As a by-product of our analysis, we also obtain convergence rates for the corresponding maximum likelihood estimator.