首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Tail index estimation, concentration and adaptivity
  • 本地全文:下载
  • 作者:Stéphane Boucheron ; Maud Thomas
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:2
  • 页码:2751-2792
  • DOI:10.1214/15-EJS1088
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This paper presents an adaptive version of the Hill estimator based on Lespki’s model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand’s concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata’s representation of slowly varying functions, and Rényi’s characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.
国家哲学社会科学文献中心版权所有