首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:An Atomic Norm Minimization Framework for Identification of Parameter Varying Nonlinear ARX Models
  • 本地全文:下载
  • 作者:Rajiv Singh ; Mario Sznaier ; Lennart Ljung
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:28
  • 页码:1-6
  • DOI:10.1016/j.ifacol.2019.12.342
  • 语种:English
  • 出版社:Elsevier
  • 摘要:We propose a generalization of the popular nonlinear ARX model structure by treating its parameters as varying over time. The parameters are considered generated by linear filters operating on the model’s regressors. The filters are expressed as a sum of atoms that are either sum of damped exponentials and sinusoids, or sinusoids with time varying frequencies. This form allows us to enforce stability of the parameter evolution as well as leverage the atomic norm minimization framework for inducing sparsity. It also facilitates easy incorporation of smoothness related priors that that making it possible to treat these models as nonlinear extensions of the familiar LPV models.
  • 关键词:KeywordsLPVNARXsystem identificationatomic normFrank-Wolferegularizationstable spline kernelRKHS
国家哲学社会科学文献中心版权所有