首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Reinforcement Learning Approach for Navigation of Ground Robotic Platform in Statically and Dynamically Generated Environments
  • 本地全文:下载
  • 作者:Dmitry Dudarenko ; Julia Rubtsova ; Artem Kovalev
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:25
  • 页码:445-450
  • DOI:10.1016/j.ifacol.2019.12.579
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper considers robotic platform navigation in terms of logistics, movement and track routing within indoor environments. Smart navigation and platform routing using a neural network are investigated. The paper discusses environment modeling with Unity ML software suite in static (prefabricated) and dynamically generated environments. Along with reinforcement learning, a procedural generation approach and its possible industrial applications are considered. The proposed algorithm for environment generation is characterized by higher performance comparing to analogues and allows to avoid model overfitting.
  • 关键词:KeywordsMobile PlatformRoboticsMachine LearningReinforcement LearningNeural NetworksProcedural Generation
国家哲学社会科学文献中心版权所有