首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Learning Based Approximate Model Predictive Control for Nonlinear Systems ⁎
  • 本地全文:下载
  • 作者:D. Gángó ; T. Péni ; R. Tóth
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:28
  • 页码:152-157
  • DOI:10.1016/j.ifacol.2019.12.363
  • 语种:English
  • 出版社:Elsevier
  • 摘要:The paper presents a systematic design procedure for approximate explicit model predictive control for constrained nonlinear systems described inlinear parameter-varying (LPV)form. The method applies aGaussian process (GP)model to learn the optimal control policy generated by a recently developed fastmodel predictive control (MPC)algorithm based on an LPV embedding of the nonlinear system. By exploiting the advantages of the GP structure, various active learning methods based on information theoretic criteria, gradient analysis and simulation data are combined to systematically explore the relevant training points. The overall method is summarized in a complete synthesis procedure. The applicability of the proposed method is demonstrated by designing approximate predictive controllers for constrained nonlinear mechanical systems.
  • 关键词:Keywordsmodel predictive controlGaussian processlinear parameter-varying systemsmachine learning
国家哲学社会科学文献中心版权所有