首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Goal-biased Bidirectional RRT based on Curve-smoothing
  • 本地全文:下载
  • 作者:Haoyue Liu ; Xuebo Zhang ; Jian Wen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:24
  • 页码:255-260
  • DOI:10.1016/j.ifacol.2019.12.417
  • 语种:English
  • 出版社:Elsevier
  • 摘要:In this paper, a goal-biased bidirectional Rapidly-exploring Random Trees (RRTs) algorithm based on curve-smoothing is newly proposed. The main contribution of this work is that the two-parts of the rapidly-exploring random trees generated in the bidirectional search process are smoothly connected by Bézier curves, so that the whole path satisfies kinematic constraints. Comparative experimental results with the naive RRT algorithm are presented to demonstrate that the proposed algorithm can achieve superior performance in terms of higher success rate, shorter search time, shorter path length and fewer number of the search nodes. Finally, in order to simulate the motion of the robot in a real environment, we track the trajectory through a controller under the visual robot simulation platform V-Rep.
  • 关键词:KeywordsRapidly-exploring Random Trees (RRTs)goal biasbidirectional searchesBézier curvesvisual simulation
国家哲学社会科学文献中心版权所有