首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Assessing Deep-learning Methods for Object Detection at Sea from LWIR Images
  • 本地全文:下载
  • 作者:Frederik E.T. Schöller ; Martin K. Plenge-Feidenhans’l ; Jonathan D. Stets
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:21
  • 页码:64-71
  • DOI:10.1016/j.ifacol.2019.12.284
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper assesses the performance of three convolutional neural networks for object detection at sea using Long Wavelength Infrared (LWIR) images in the 8- 14µm range. Capturing images from ferries and annotating 20k images, fine-tuning is done of three state of art deep neural networks: RetinaNet, YOLO and Faster R-CNN. Targeting on vessels and buoys as two main classes of interest for navigation, performance is quantified by the cardinality of true and false positives and negatives in a random validation set. Calculating precision and recall as functions of tuning parameters for the three classifiers, noticeable differences are found between the three networks when used for LWIR image object classification at sea. The results lead to conclusions on imaging requirements when classification is used to support navigation.
  • 关键词:KeywordsObject DetectionAutonomous marine craftsNavigationLong-wave Infra-redDetection at seaAutonomous Ship
国家哲学社会科学文献中心版权所有