首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Autonomous Underwater Vehicle Navigation Using Sonar Image Matching based on Convolutional Neural Network
  • 本地全文:下载
  • 作者:Wenli Yang ; Shuangshuang Fan ; Shuxiang Xu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:21
  • 页码:156-162
  • DOI:10.1016/j.ifacol.2019.12.300
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper presents an image matching algorithm based on convolutional neural network (CNN) to aid in the navigating of an Autonomous Underwater Vehicle (AUV) where external navigation aids are not available. We aim to solve the problem where traditional image feature representations and similarity learning are not learned jointly and to improve the matching accuracy of sonar images in deep ocean with dynamic backgrounds, low-intensity and high-noise scenes. In our work, the proposed CNN-based model can train the texture features of sonar images without any manually designed feature descriptors, which can jointly optimize the representation of the input data conditioned on the similarity measure being used. The validation studies show the feasibility and veracity of the proposed method for many general and offset cases using collected sonar images.
  • 关键词:KeywordsSonar Image matchingConvolutional neural networkfeature extractionAUVTeachRepeat path following
国家哲学社会科学文献中心版权所有