首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Comparison of Methods for Quantifying Prediction Uncertainty in Systems Biology ⁎
  • 本地全文:下载
  • 作者:Alejandro F. Villaverde ; Elba Raimúndez ; Jan Hasenauer
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:26
  • 页码:45-51
  • DOI:10.1016/j.ifacol.2019.12.234
  • 语种:English
  • 出版社:Elsevier
  • 摘要:The parameters of dynamical models of biological processes always possess some degree of uncertainty. This parameter uncertainty translates into an uncertainty of model predictions. The trajectories of unmeasured state variables are examples of such predictions. Quantifying the uncertainty associated with a given prediction is an important problem for model developers and users. However, the nonlinearity and complexity of most dynamical models renders it nontrivial. Here, we evaluate three state-of-the-art approaches for prediction uncertainty quantification using two models of different sizes and computational complexities. We discuss the trade-offs between applicability and statistical interpretability of the different methods, and provide guidelines for their application.
  • 关键词:KeywordsComputational methodsDynamic modelsNonlinear systemsObservabilityPrediction error methodsState estimationUncertainty
国家哲学社会科学文献中心版权所有