首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Novel Method for LWIR Hyperspectral Target Detection by Means of a Subspace-Based Approach
  • 本地全文:下载
  • 作者:Matteo Moscadelli ; Nicola Acito ; Marco Diani
  • 期刊名称:Proceedings
  • 电子版ISSN:2504-3900
  • 出版年度:2019
  • 卷号:27
  • 期号:1
  • 页码:47
  • DOI:10.3390/proceedings2019027047
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:In this work, we present a new approach to detect materials with known spectral emissivity, in data acquired by thermal infrared hyperspectral systems. The method takes into account the spectral variability of the downwelling radiance, commonly neglected in most target detection techniques. We address such variability supposing that the downwelling radiance spans a low-rank subspace, whose basis matrix is learned off-line by means of MODTRAN. We evaluate the performance of the method with simulated data, and present results that show the effectiveness of the proposed algorithm.
国家哲学社会科学文献中心版权所有