首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Three Pathways for Observed Resonant Chains
  • 本地全文:下载
  • 作者:Mariah G. MacDonald ; Rebekah I. Dawson
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2018
  • 卷号:156
  • 期号:5
  • 页码:1-15
  • DOI:10.3847/1538-3881/aae266
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:A question driving many studies is whether the thousands of exoplanets known today typically formed where we observe them or formed further out in the disk and migrated in. Early discoveries of giant exoplanets orbiting near their host stars and exoplanets in or near mean motion resonances were interpreted as evidence for migration and its crucial role in the beginnings of planetary systems. Long-scale migration has been invoked to explain systems of planets in mean motion resonant chains consisting of three or more planets linked by integer period ratios. However, recent studies have reproduced specific resonant chains in systems via short-scale migration, and eccentricity damping has been shown to capture planets into resonant chains. We investigate whether the observed resonant chains in Kepler-80, Kepler-223, Kepler-60, and TRAPPIST-1 can be established through long-scale migration, short-scale migration, and/or only eccentricity damping by running suites of N-body simulations. We find that, for each system, all three mechanisms are able to reproduce the observed resonant chains. Long-scale migration is not the only plausible explanation for resonant chains in these systems, and resonant chains are potentially compatible with in situ formation.
  • 关键词:planets and satellites: dynamical evolution and stability;stars: individual (Kepler-80, Kepler-223, Kepler-60, TRAPPIST-1)
国家哲学社会科学文献中心版权所有