首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Responses of Secondary Inorganic PM2.5 to Precursor Gases in an Ammonia Abundant Area In North Carolina
  • 本地全文:下载
  • 作者:Bin Cheng ; Lingjuan Wang-Li
  • 期刊名称:Aerosol and Air Quality Research
  • 印刷版ISSN:1680-8584
  • 出版年度:2019
  • 卷号:19
  • 期号:5
  • 页码:1126-1138
  • DOI:10.4209/aaqr.2018.10.0384
  • 语种:English
  • 出版社:Chinese Association for Aerosol Research in Taiwan
  • 摘要:Secondary inorganic fine particulate matter (iPM2.5) constitutes a significant amount of the atmospheric PM2.5. The formation of secondary iPM2.5 is characterized by thermodynamic equilibrium gas-particle partitioning of gaseous ammonia (NH3) and aerosol ammonium (NH4+). To develop effective strategies for controlling atmospheric PM2.5, it is essential to understand the responses of secondary iPM2.5 to different precursor gases. In southeastern North Carolina, the amount of NH3 is in excess to fully neutralize acidic gases (i.e., NH3-rich conditions). NH3-rich conditions are mainly attributed to the significant NH3 emissions in the region, especially from the large amounts of animal feeding operation (AFO). To gain a better understanding of the impact of NH3 on the formation of secondary iPM2.5 in this area, the responses of iPM2.5 to precursor gases under different ambient conditions were investigated based upon three-year monitoring data of the chemical components in iPM2.5, gaseous pollutants, and meteorological conditions. The gas ratio (GR) was used to assess the degree of neutralization via NH3, and ISORROPIA II model simulation was used to examine the responses of iPM2.5 to changes in the total NH3, the total sulfuric acid (H2SO4), and the total nitric acid (HNO3). It was discovered that under different ambient temperature and humidity conditions, the responses of iPM2.5 to precursor gases vary. In general, iPM2.5 responds nonlinearly to the total NH3 but linearly to the total H2SO4 and the total HNO3. In NH3-rich regions, iPM2.5 is not sensitive to changes in the total NH3, but it is very sensitive to changes in the total H2SO4 and/or the total HNO3. Reducing the total H2SO4, as opposed to the total HNO3 or the total NH3, leads to a significant reduction in iPM2.5 and is thus a more effective strategy for decreasing the concentration of iPM2.5. This research provides insight into controlling and regulating PM2.5 in NH3-rich regions.
  • 关键词:Ammonia;Inorganic PM2.5;Thermodynamic equilibrium modeling;ISORROPIA II;Animal feeding operations
国家哲学社会科学文献中心版权所有