首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis
  • 本地全文:下载
  • 作者:Jae Woo Lee ; Kyeongsoo Hong ; Jae-Rim Koo
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2018
  • 卷号:155
  • 期号:1
  • 页码:1-8
  • DOI:10.3847/1538-3881/aa947e
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be Teff,1 = 8260  210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M1=2.03±0.06 M, M2=0.19±0.01 M, R1=2.08±0.03 R, R2=1.20±0.02 R, L1=18±2 L, and L2=2.0±0.2 L. Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.
  • 关键词:binaries: eclipsing;stars: fundamental parameters;stars: individual (OO Dra);stars: oscillations (including pulsations);techniques: spectroscopic
国家哲学社会科学文献中心版权所有