首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Time-dependent data-driven coronal simulations of AR 12673 from emergence to eruption
  • 本地全文:下载
  • 作者:D. J. Price ; J. Pomoell ; E. Lumme
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2019
  • 卷号:628
  • 页码:1-10
  • DOI:10.1051/0004-6361/201935535
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Aims.We present a detailed study of the magnetic evolution of AR 12673 using a magnetofrictional modelling approach.Methods.The fully data-driven and time-dependent model was driven with maps of the photospheric electric field, inverted from vector magnetogram observations obtained from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Our analysis was aided by studying the evolution of metrics such as the free magnetic energy and the current-carrying helicity budget of the domain, maps of the squashing factor and twist, and plots of the current density. These allowed us to better understand the dynamic nature of the magnetic topology.Results.Our simulation captured the time-dependent nature of the active region and the erupting flux rope associated with the X-class flares on 6 September 2017, including the largest of solar cycle 24. Additionally, our results suggest a possible threshold for eruptions in the ratio of current-carrying helicity to relative helicity.Conclusion.The flux rope was found to be a combination of two structures that partially combine during the eruption process. Our time-dependent data-driven magnetofrictional model is shown to be capable of generating magnetic fields consistent with extreme ultraviolet (EUV) observations.
  • 关键词:enSun: coronal mass ejections (CMEs)Sun: coronamagnetic reconnectionmethods: numericalmagnetic fieldsmethods: data analysis
国家哲学社会科学文献中心版权所有