首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:The Milky Way has no in-situ halo other than the heated thick disc
  • 其他标题:Composition of the stellar halo and age-dating the last significant merger withGaiaDR2 and APOGEE
  • 本地全文:下载
  • 作者:P. Di Matteo ; M. Haywood ; M. D. Lehnert
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2019
  • 卷号:632
  • 页码:1-23
  • DOI:10.1051/0004-6361/201834929
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Previous studies based on the analysis ofGaiaDR2 data have revealed that accreted stars, possibly originating from a single progenitor satellite, are a significant component of the halo of our Galaxy, potentially constituting most of the halo stars at [Fe/H] <  −1 within a few kpc from the Sun and beyond. In this paper, we couple astrometric data fromGaiaDR2 with elemental abundances from APOGEE DR14 to characterise the kinematics and chemistry of in-situ and accreted populations up to [Fe/H] ∼ −2. Accreted stars appear to significantly impact the galactic chemo–kinematic relations, not only at [Fe/H] <  −1, but also at metallicities typical of the thick and metal-poor thin discs. They constitute about 60% of all stars at [Fe/H] <  −1, the remaining 40% being made of (metal-weak) thick-disc stars. We find that the stellar kinematic fossil record shows the imprint left by this accretion event, which heated the old galactic disc. We are able to age-date this kinematic imprint, showing that the accretion occurred between nine and 11 Gyr ago, and that it led to the last significant heating of the galactic disc. An important fraction of stars with abundances typical of the (metal-rich) thick disc, and heated by this interaction, is now found in the galactic halo. Indeed, about half of the kinematically defined halo at few kpc from the Sun is composed of metal-rich thick-disc stars. Moreover, we suggest that this metal-rich thick-disc component dominates the stellar halo of the inner Galaxy. The new picture that emerges from this study is one where the standard, non-rotating in-situ halo population, the collapsed halo, seems to be more elusive than ever.
  • 关键词:enGalaxy: abundancesGalaxy: stellar contentGalaxy: kinematics and dynamicsGalaxy: structureGalaxy: evolution
国家哲学社会科学文献中心版权所有