首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A thin shell of ionized gas as the explanation for infrared excess among classical Cepheids
  • 本地全文:下载
  • 作者:V. Hocdé ; N. Nardetto ; E. Lagadec
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2020
  • 卷号:633
  • 页码:1-19
  • DOI:10.1051/0004-6361/201935848
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context.The infrared (IR) excess of classical Cepheids is seldom studied and poorly understood despite observational evidence and the potential for its contribution to induce systematics on the period-luminosity (PL) relation used in the calibration of the extragalactic distance scale.Aims.This study aims to understand the physical origin of the IR excess found in the spectral energy distribution (SED) of 5 Cepheids: RS Pup (P= 41.46d),ζGem (P= 10.15d),ηAql (P= 7.18d), V Cen (P= 5.49d) and SU Cyg (P= 3.85d).Methods.A time series of atmospheric models along the pulsation cycle were fitted to a compilation of data, including optical and near-IR photometry,Spitzerspectra (secured at a specific phase), interferometric angular diameters, effective temperature estimates, and radial velocity measurements.Herschelimages in two bands were also analyzed qualitatively. In this fitting process, based on the SPIPS algorithm, a residual was found in the SED, whatever the pulsation phase, and for wavelengths larger than about 1.2μm, which corresponds to the so-determined infrared excess of Cepheids. This IR excess was then corrected from interstellar medium absorption in order to infer the presence (or absence) of dust shells and was, ultimately, used in order to fit a model for a shell of ionized gas.Results.For all Cepheids, we find a continuum IR excess increasing up to approximately −0.1 magnitudes at 30μm, which cannot be explained by a hot or cold dust model of CircumStellar Environment (CSE). However, a weak but significant dust emission at 9.7μm is found forζGem,ηAql and RS Pup, while clear interstellar clouds are seen in theHerschelimages for V Cen and RS Pup. We show, for the first time, that the IR excess of Cepheids can be explained by free–free emission from a thin shell of ionized gas, with a thickness of ≃15% of the star radius, a mass of 10−9−10−7M⊙and a temperature ranging between 3500 and 4500 K.Conclusions.The presence of a thin shell of ionized gas around Cepheids must be tested with interferometers operating in the visible or mid-IR, or using radio telescopes. The impact of such CSEs of ionized gas on the PL relation of Cepheids also calls for further investigation.
  • 关键词:Key wordsenstars: variables: Cepheidscircumstellar matterstars: atmospheres
国家哲学社会科学文献中心版权所有