摘要:Context.Particulate surfaces exhibit a surge of reflectance at low phase angles, a phenomenon referred to as the opposition effect (OE). Two mechanisms are recognized as responsible for the OE: shadow hiding (SH) and coherent backscattering. The latter is typically characterized by a small angular width of a few degrees at most and according to the theoretical prediction should exhibit wavelength and albedo dependence.Aims.We characterize the OE on the surface of Ceres using Dawn Visible InfraRed mapping spectrometer hyperspectral images at low phase angles. Furthermore, this dataset, coupled with previous observations, allows us to perform a complete spectrophotometric modeling at visual-to-infrared (VIS-IR) wavelengths (0.465–4.05μm) in the broad phase angle range ≈0°−132°.Methods.We applied Hapke’s theory to the average phase curve for Ceres. Disk-resolved properties of the OE were investigated through an empirical model.Results.Across the investigated phase angle interval, Ceres’ average phase curve exhibits a smaller back-scattering contribution for increasing wavelengths. This determines a progressive spectral reddening at larger phase angles that we hypothesize as being related to the effect of submicron roughness on the grain surface. In the OE region, the shape of the phase curves is fairly constant across the VIS range and no sharp opposition surge at very small phase angles (α< 2°) can be recognized. This would suggest a major contribution from SH to Ceres’ OE. Assuming SH as the dominant mechanism, from the OE angular width we infer a high surface porosity (≈0.9), which appears in good qualitative agreement with Ceres’ low thermal inertia. Thanks to the OE observations we derive Ceres’ VIS-IR geometric albedo with a reference value at 0.55μm of 0.098 ± 0.007. Mapping of the VIS normal albedo and OE angular width across a portion of the surface of Ceres does not reveal a spatial correlation between these quantities, consistent with SH dominating in theα= 0°−7° interval. The comparison of Ceres’V-band magnitude curve with that of other asteroids indicates that Ceres’ OE is typical of a low-albedo object and compatible with the C-class type.
关键词:Key wordsenminor planets, asteroids: individual: Ceresmethods: data analysistechniques: photometricradiative transfertechniques: imaging spectroscopyplanets and satellites: surfaces