首页    期刊浏览 2024年08月22日 星期四
登录注册

文章基本信息

  • 标题:Realistic collisional water transport during terrestrial planet formation
  • 其他标题:Self-consistent modeling by anN-body–SPH hybrid code
  • 本地全文:下载
  • 作者:C. Burger ; Á. Bazsó ; C. M. Schäfer
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2020
  • 卷号:634
  • 页码:1-32
  • DOI:10.1051/0004-6361/201936366
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context.According to the latest theoretical and isotopic evidence, Earth’s water content originates mainly from today’s asteroid belt region, or at least from the same precursor material. This suggests that water was transported inwards to Earth, and to similar planets in their habitable zone, via (giant) collisions of planetary embryos and planetesimals during the chaotic final phase of planet formation.Aims.In current dynamical simulations water delivery to terrestrial planets is still studied almost exclusively by assuming oversimplified perfect merging, even though water and other volatiles are particularly prone to collisional transfer and loss. To close this gap we have developed a computational framework to model collisional water transport by direct combination of long-termN-body computations with dedicated 3D smooth particle hydrodynamics (SPH) collision simulations of differentiated, self-gravitating bodies for each event.Methods.Post-collision water inventories are traced self-consistently in the further dynamical evolution, in accretionary or erosive as well as hit-and-run encounters with two large surviving bodies, where besides collisional losses, water transfer between the encountering bodies has to be considered. This hybrid approach enables us for the first time to trace the full dynamical and collisional evolution of a system of approximately 200 bodies throughout the whole late-stage accretion phase (several hundred Myr). As a first application we choose a Solar System-like architecture with already formed giant planets on either circular or eccentric orbits and a debris disk spanning the whole terrestrial planet region (0.5–4 au).Results.Including realistic collision treatment leads to considerably different results than simple perfect merging, with lower mass planets and water inventories reduced regularly by a factor of two or more. Due to a combination of collisional losses and a considerably lengthened accretion phase, final water content, especially with giant planets on circular orbits, is strongly reduced to more Earth-like values, and closer to results with eccentric giant planets. Water delivery to potentially habitable planets is dominated by very few decisive collisions, mostly with embryo-sized or larger objects and only rarely with smaller bodies, at least if embryos have formed throughout the whole disk initially. The high frequency of hit-and-run collisions and the differences to predominantly accretionary encounters, such as generally low water (and mass) transfer efficiencies, are a crucial part of water delivery, and of system-wide evolution in general.
  • 关键词:Key wordsenplanets and satellites: formationmethods: numericalplanets and satellites: terrestrial planetshydrodynamicsplanets and satellites: composition
国家哲学社会科学文献中心版权所有