首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Modeling the orbital motion of Sgr A*’s near-infrared flares
  • 本地全文:下载
  • 作者:M. Bauböck ; J. Dexter ; R. Abuter
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2020
  • 卷号:635
  • 页码:1-9
  • DOI:10.1051/0004-6361/201937233
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Infrared observations of Sgr A* probe the region close to the event horizon of the black hole at the Galactic center. These observations can constrain the properties of low-luminosity accretion as well as that of the black hole itself. The GRAVITY instrument at the ESO VLTI has recently detected continuous circular relativistic motion during infrared flares which has been interpreted as orbital motion near the event horizon. Here we analyze the astrometric data from these flares, taking into account the effects of out-of-plane motion and orbital shear of material near the event horizon of the black hole. We have developed a new code to predict astrometric motion and flux variability from compact emission regions following particle orbits. Our code combines semi-analytic calculations of timelike geodesics that allow for out-of-plane or elliptical motions with ray tracing of photon trajectories to compute time-dependent images and light curves. We apply our code to the three flares observed with GRAVITY in 2018. We show that all flares are consistent with a hotspot orbiting atR ∼ 9 gravitational radii with an inclination ofi ∼ 140°. The emitting region must be compact and less than ∼5 gravitational radii in diameter. We place a further limit on the out-of-plane motion during the flare.
  • 关键词:enblack hole physicsGalaxy: centeraccretionaccretion disks
国家哲学社会科学文献中心版权所有