首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Using Data Mining Algorithms to Discover Regular Sound Changes among Languages
  • 本地全文:下载
  • 作者:Peter Z. Revesz
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2019
  • 卷号:292
  • 页码:1-5
  • DOI:10.1051/matecconf/201929203018
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:This paper presents a method of using association rule data mining algorithms to discover regular sound changes among languages. The method presented has a great potential to facilitate linguistic studies aimed at identifying distantly related cognate languages. As an experimental example, this paper presents the application of the data mining method to the discovery of regular sound changes between the Hungarian and the Sumerian languages, which separated at least five thousand years ago when the Proto-Sumerian reached Mesopotamia. The data mining method discovered an important regular sound change between Hungarian word initial /f/ and Sumerian word initial /b/ phonemes.
国家哲学社会科学文献中心版权所有