首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Analysis and Smoothing of EMG Signal Envelope Using Kalman and UFIR Filtering under Colored Measurement Noise
  • 本地全文:下载
  • 作者:Sandra Márquez-Figueroa ; Yuriy S. Shmaliy ; Oscar Ibarra-Manzano
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2019
  • 卷号:292
  • 页码:1-6
  • DOI:10.1051/matecconf/201929204002
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:This article describes some filtering methods to remove artifacts from the EMG signal envelope. Diverse EMG waveforms are studied using the Kalman filter (KF) and unbiased finite impulse response (UFIR) filter. The filters are developed in discrete-time state-space for Gauss-Markov colored measurement noise (CMN) and termed as cKF and cUFIR. It is shown that a choice of a proper CMN factor allows extracting the EMG waveform envelope with a high robustness. Extensive investigation have shown that the cKF and cUFIR filter are most efficient when the density is low of the motor unit action potential (MUAP) of the EMG and the Hilbert transform is required. Otherwise, when the envelope is well-pronounced and well-shaped with sharp edges due to a high MUAP density, the filters can be applied directly without using the Hilbert transform.
国家哲学社会科学文献中心版权所有