摘要:The manufacture of rolling stock components with a given life cycle based on the computerization of all design and production stages is the most promising way to increase the energy efficiency of its operation. The implementation of this approach requires the expansion of the use of technologies that provide parts with a high level of mechanical and operational properties. The state of the surface layers is important in the formation of the reliability parameters of high-loaded parts. The principles of using system approaches for the physical justification of the choice of the optimal modes of engineering grain boundaries depending on the operating conditions of products are presented. New approaches and algorithms have been created that allow quantitative and qualitative studies of the effect of technological treatments and the chemical composition of polycrystals on the strength of grain boundaries and the processes of softening of the boundary zones. Using the developed techniques, the ways to control the energy state of the internal interfaces by doping, microalloying and heat treatment were determined to increase the resistance to brittle fracture and wear of the steels used in the manufacture and repair of rolling stock.