摘要:During internal grinding a large amount of heat is formed. A heat has a negative impact on all processing indicators. The speed of heat removal from the processed workpiece is defined not only by structure of grinding wheel and by giving method of lubricant cooling liquid (LCL), but also by the aerodynamic streams, which are formed by a tool rotation. Aerodynamics of traditional grinding wheels is studied in detail, but for textured wheels to aerodynamic streams did not pay of due attention. The multiple-factor experiment is executed and models of movement speed of the aerodynamic streams are determined. It is established, that the greatest influence on the movement speed of the air flows has an axial distance of a measurement point from an end face of abrasive segments and a radial distance of this point from the cutting surface. Static pressure of air in an internal wheel’s cavity is equal 47 Pas, and outside of the wheel in close proximity to the cutting surface – 212 Pas. Taking into account the received experimental data of the movement speeds of aerodynamic streams and different data of air pressure in the specified areas, possible methods of giving of LCL in a cutting zone are analysed. It is established, that the most effective is the centrifugal method of giving of LCL to an internal cavity of the textured tool.