首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Research on Fault Diagnosis Model of Rotating Machinery Vibration Based on Information Entropy and Improved SVM
  • 本地全文:下载
  • 作者:Hankun Bing ; Yuzhu Zhao ; Le Pang
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:118
  • 页码:1-5
  • DOI:10.1051/e3sconf/201911802036
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Based on the concept of information entropy, this paper analyzes typical nonlinear vibration fault signals of steam turbine based on spectrum, wavelet and HHT theory methods, and extracts wavelet energy spectrum entropy, IMF energy spectrum entropy, time domain singular value entropy and frequency domain power spectrum entropy as faults. The feature is supported by a support vector machine (SVM) as a learning platform. The research results show that the fusion information entropy describes the vibration fault more comprehensively, and the support vector machine fault diagnosis model can achieve higher diagnostic accuracy.
国家哲学社会科学文献中心版权所有