首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Precise radial velocities of giant stars
  • 其他标题:XII. Evidence against the proposed planet Aldebaran b⋆
  • 本地全文:下载
  • 作者:Katja Reichert ; Sabine Reffert ; Stephan Stock
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2019
  • 卷号:625
  • DOI:10.1051/0004-6361/201834028
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context.Radial-velocity variations of the K giant star Aldebaran (αTau) were first reported in the early 1990s. After subsequent analyses, the radial-velocity variability with a period of ∼629 d has recently been interpreted as caused by a planet of several Jovian masses.Aims.We want to further investigate the hypothesis of an extrasolar planet around Aldebaran.Methods.We combine 165 new radial-velocity measurements from Lick Observatory with seven already published data sets comprising 373 radial-velocity measurements. We perform statistical analyses and investigate whether a Keplerian model properly fits the radial velocities. We also perform a dynamical stability analysis for a possible two-planet solution. Furthermore, the possibility of oscillatory convective modes as cause for the observed radial-velocity variability is discussed.Results.As best Keplerian fit to the combined radial-velocity data we obtain an orbit for the hypothetical planet with a smaller period (P = 607 d) and a larger eccentricity (e = 0.33 ± 0.04) than the previously proposed one. However, the residual scatter around that fit is still large, with a standard deviation of 117 ms−1. In 2006/2007, the statistical power of the ∼620 d period showed a temporary but significant decrease. Plotting the growth of power in reverse chronological order reveals that a period around 620 d is clearly present in the newest data but not in the data taken before ∼2006. Furthermore, an apparent phase shift between radial-velocity data and orbital solution is observable at certain times. A two-planet Keplerian fit matches the data considerably better than a single-planet solution, but poses severe dynamical stability issues.Conclusions.The radial-velocity data from Lick Observatory do not further support but in fact weaken the hypothesis of a substellar companion around Aldebaran. Oscillatory convective modes might be a plausible alternative explanation of the observed radial-velocity variations.
  • 关键词:enstars: individual: α Tauplanets and satellites: detectiontechniques: radial velocitiesinstrumentation: spectrographs
国家哲学社会科学文献中心版权所有