摘要:In this paper, we deal with large-scale nonconvex optimization problems, typically arising in distributed nonlinear optimal control, that must be solved by agents in a network. Each agent is equipped with a local cost function, depending only on a local variable. The variables must satisfy privatenonconvexconstraints and global coupling constraints. We propose a distributed algorithm for the fast computation of a feasible solution of the nonconvex problem in finite time, through a distributed primal decomposition framework. The method exploits the solution of a convexified version of the problem, with restricted coupling constraints, to compute a feasible solution of the original problem. Numerical computations corroborate the results.
关键词:KeywordsDistributed optimizationMPCmulti-agent systems