首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Deep Convolutional Neural Network for Mill Feed Size Characterization ⁎
  • 本地全文:下载
  • 作者:Laurentz E. Olivier ; Michael G. Maritz ; Ian K. Craig
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:14
  • 页码:105-110
  • DOI:10.1016/j.ifacol.2019.09.172
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Knowing the characteristics of the feed ore size is an important consideration for operations and control of a run-of-mine ore milling circuit. Large feed ore variations are important to detect as they require intervention, whether it be manual by the operator or by an automatic controller. A deep convolutional neural network is used in this work to classify the feed ore images into one of four classes. A VGG16 architecture is used and the classifier is trained making use of transfer learning.
  • 关键词:KeywordsDeep learningconvolutional neural networktransfer learningmillingrun-of-mine ore
国家哲学社会科学文献中心版权所有