首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Distributed Multi-Agent Reinforcement Learning by Actor-Critic Method
  • 本地全文:下载
  • 作者:Paulo C. Heredia ; Shaoshuai Mou
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:20
  • 页码:363-368
  • DOI:10.1016/j.ifacol.2019.12.182
  • 语种:English
  • 出版社:Elsevier
  • 摘要:We investigate the problem of multi-agent reinforcement learning, in which each agent only has access to its local reward and can only communicate with its nearby neighbors. A distributed algorithm based on actor-critic method has been developed to enable all agents to cooperatively learn a control policy that maximizes the global objective function. Simulations are also provided to validate the proposed algorithm.
国家哲学社会科学文献中心版权所有