首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A Random Forest-based Approach for Hand Gesture Recognition with Wireless Wearable Motion Capture Sensors
  • 本地全文:下载
  • 作者:Nicoló Bargellesi ; Mattia Carletti ; Angelo Cenedese
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:11
  • 页码:128-133
  • DOI:10.1016/j.ifacol.2019.09.129
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Gesture Recognition has a prominent importance in smart environment and home automation. Thanks to the availability of Machine Learning approaches it is possible for users to define gestures that can be associated with commands for the smart environment. In this paper we propose a Random Forest-based approach for Gesture Recognition of hand movements starting from wireless wearable motion capture data. In the presented approach, we evaluate different feature extraction procedures to handle gestures and data with different duration. To enhance reproducibility of our results and to foster research in the Gesture Recognition area, we share the dataset that we have collected and exploited for the present work.
  • 关键词:KeywordsGesture RecognitionMachine LearningMotion CaptureRandom Forests
国家哲学社会科学文献中心版权所有