摘要:Gesture Recognition has a prominent importance in smart environment and home automation. Thanks to the availability of Machine Learning approaches it is possible for users to define gestures that can be associated with commands for the smart environment. In this paper we propose a Random Forest-based approach for Gesture Recognition of hand movements starting from wireless wearable motion capture data. In the presented approach, we evaluate different feature extraction procedures to handle gestures and data with different duration. To enhance reproducibility of our results and to foster research in the Gesture Recognition area, we share the dataset that we have collected and exploited for the present work.