首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Application of multigrid NLS-4DVar in radar radial velocity data assimilation with WRF-ARW
  • 本地全文:下载
  • 作者:Lu ZHANG ; Xiangjun TIAN ; Hongqin ZHANG
  • 期刊名称:Atmospheric and Oceanic Science Letters
  • 印刷版ISSN:1674-2834
  • 电子版ISSN:2376-6123
  • 出版年度:2019
  • 卷号:12
  • 期号:6
  • 页码:409-416
  • DOI:10.1080/16742834.2019.1671767
  • 语种:English
  • 出版社:Taylor and Francis Ltd
  • 摘要:The nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method introduced here combines the merits of the ensemble Kalman filter and 4DVar assimilation methods. The multigrid NLS-4DVar method can be implemented without adjoint models and also corrects small- to large-scale errors with greater accuracy. In this paper, the multigrid NLS-4DVar method is used in radar radial velocity data assimilations. Observing system simulation experiments were conducted to determine the capability and efficiency of multigrid NLS-4DVar for assimilating radar radial velocity with WRF-ARW (the Advanced Research Weather Research and Forecasting model). The results show significant improvement in 24-h cumulative precipitation prediction due to improved initial conditions after assimilating the radar radial velocity. Additionally, the multigrid NLS-4DVar method reduces computational cost.
  • 其他摘要:非线性最小二乘法的集合四维变分同化方法是一种结合了集合卡尔曼滤波和四维变分同化优势 的混合同化方法.引入多重网格策略的NLS-4DVar方法不仅可以避免使用伴随模式,而且可以从 大尺度到小尺度依次修正误差得到精度更高的分析场.本文将高效的多重网格策略的NLS-4DVar 方法应用于雷达径向风数据同化中.通过一组基于ARW-WRF模式的观测系统模拟试验检验该方 法对雷达径向风的同化能力和同化效率.试验结果显示,同化雷达径向风数据后,初始场得到 明显改进且24小时累计降水预报精度有大幅度提高.与此同时,多重网格策略的NLS-4DVar方法 还减少了计算代价,明显提高了计算效率.
  • 关键词:Heavy rainfall;multigrid scheme NLS-4DVar method;radar radial velocity data assimilation
  • 其他关键词:强降水##多重网格策略NLS-4DVar方法##雷达径向风同化
国家哲学社会科学文献中心版权所有