摘要:AbstractBackgroundThe city of Addis Ababa is under rapid development and there are enormous construction activities along with rapid urbanization, and industrialization. These anthropogenic actions combined with population growth rate are affecting the water demand of the city. The overall purpose of this study is to model water supply and demand of the city and to identify potential water management strategies that supports the sustainable development goal number six (SDG6)—clean water and sanitation.MethodsWe employed the Water Evaluation and Planning system (WEAP) modelling framework to analyze different scenarios for water demand and supply. The scenarios include population growth, living standard, as well as other supply and demand strategies.ResultsFor the modelling period, the reference scenario shows unmet water demand increases by around 48%, from 208 to 307 million cubic meter in 2015 and 2030 respectively. High population growth rate and high living standard scenarios have a great negative impact on the water supply system.ConclusionsSatisfying the future water demand of Addis Ababa will depend on the measures which are taken today. The integrated water management practices such as reuse of water and the selected future scenarios are proposed to decrease and manage the unmet water demand of the city. Hence, future predicted scenarios which is the combination of the external factors (i.e. population growth rate and living standard) and water management strategies were considered. From the analyzed scenarios, optimistic future strategies will support the management of the existing water supply and demand system of the city. Similarly, in the integrated management strategies scenario, it was assumed that measures were taken at both the demand and supply side to improve the efficiency of water in the entire chain. Thus, if the water sector professionals and other concerned bodies consider the selected scenarios, it will go a long way to solve the water shortage problem in the city, and this will also help to promote sustainable water management.