摘要:SummaryProtein reduction/oxidation processes trigger and finely regulate a myriad of physiological and pathological cellular functions. Many biochemical and biophysical stimuli have been recently explored to precisely and effectively modulate intracellular redox signaling, due to the considerable therapeutic potential. Here, we propose a first step toward an approach based on visible light excitation of a thiophene-based semiconducting polymer (P3HT), demonstrating the realization of a hybrid interface with the Cytochromecprotein (CytC), in an extracellular environment. By means of scanning electrochemical microscopy and spectro-electrochemistry measurements, we demonstrate that, upon optical stimulation, a functional interaction between P3HT and CytC is established. Polymer optical excitation locally triggers photoelectrochemical reactions, leading to modulation of CytC redox activity, either through an intermediate step, involving reactive oxygen species formation, or via a direct photoreduction process. Both processes are triggered by light, thus allowing excellent spatiotemporal resolution, paving the way to precise modulation of protein redox signaling.Graphical AbstractDisplay OmittedHighlights•Conjugated polymers and light modulate the redox state of cytochromecprotein•Phototransduction processes are clarified by electrochemical microscopy•The approach opens the way to selective optical triggering of protein redox stateInterfacial Electrochemistry; Biochemistry Methods; Polymers