首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Selecting the Method to Overcome Partial and Full Multicollinearity in Binary Logistic Model
  • 本地全文:下载
  • 作者:N. Herawati ; K. Nisa ; Nusyirwan
  • 期刊名称:International Journal of Statistics and Applications
  • 印刷版ISSN:2168-5193
  • 电子版ISSN:2168-5215
  • 出版年度:2020
  • 卷号:10
  • 期号:3
  • 页码:55-59
  • DOI:10.5923/j.statistics.20201003.01
  • 语种:English
  • 出版社:Scientific & Academic Publishing Co.
  • 摘要:The aim of our study is to select the best method for overcoming partial and full multicollinearity in binary logistic model for different sample sizes. Logistic ridge regression (LRR), least absolute shrinkage and selection operator (LASSO) and principal component logistic regression (PCLR) compared to maximum likelihood estimator (MLE) using simulation data with different level of multicollinearity and different sample sizes (n=20, 50, 100, 200). The best method is chosen based on mean square error (MSE) values and the best model is characterized by AIC value. The results show that LRR, LASSO and PCLR surpass MLE in overcoming partial and full multicollinearity in binary logistic model. PCLR exceeds LRR and LASSO when full multicollinearity occurs in binary logistic model but LASSO and LRR are better used when partial multicollinearity exists in the model.
  • 关键词:Binary logistic model; Multicollinearity; LRR; LASSO; PCLR
国家哲学社会科学文献中心版权所有