首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Identification of RR Lyrae Stars in Multiband, Sparsely Sampled Data from the Dark Energy Survey Using Template Fitting and Random Forest Classification
  • 本地全文:下载
  • 作者:K. M. Stringer ; J. P. Long ; L. M. Macri
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2019
  • 卷号:158
  • 期号:1
  • 页码:1-26
  • DOI:10.3847/1538-3881/ab1f46
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Many studies have shown that RR Lyrae variable stars (RRL) are powerful stellar tracers of Galactic halo structure and satellite galaxies. The Dark Energy Survey (DES), with its deep and wide coverage (g∼23.5 mag in a single exposure; over 5000 deg 2 ) provides a rich opportunity to search for substructures out to the edge of the Milky Way halo. However, the sparse and unevenly sampled multiband light curves from the DES wide-field survey (a median of four observations in each of grizY over the first three years) pose a challenge for traditional techniques used to detect RRL. We present an empirically motivated and computationally efficient template-fitting method to identify these variable stars using three years of DES data. When tested on DES light curves of previously classified objects in SDSS stripe 82, our algorithm recovers 89% of RRL periods to within 1% of their true value with 85% purity and 76% completeness. Using this method, we identify 5783 RRL candidates, ∼28% of which are previously undiscovered. This method will be useful for identifying RRL in other sparse multiband data sets.
  • 关键词:catalogs;galaxy: halo;galaxy: structure;methods: statistical;stars: variables: RR Lyrae
国家哲学社会科学文献中心版权所有