首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:TURBUSTAT : Turbulence Statistics in Python
  • 本地全文:下载
  • 作者:Eric W. Koch ; Erik W. Rosolowsky ; Ryan D. Boyden
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2019
  • 卷号:158
  • 期号:1
  • 页码:1-11
  • DOI:10.3847/1538-3881/ab1cc0
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:We present T URBU S TAT (v1.0): a PYTHON package for computing turbulence statistics in spectral-line data cubes. T URBU S TAT includes implementations of 14 methods for recovering turbulent properties from observational data. Additional features of the software include: distance metrics for comparing two data sets; a segmented linear model for fitting lines with a break point; a two-dimensional elliptical power-law model; multicore fast-Fourier-transform support; a suite for producing simulated observations of fractional Brownian Motion fields, including two-dimensional images and optically thin H I data cubes; and functions for creating realistic world coordinate system information for synthetic observations. This paper summarizes the T URBU S TAT package and provides representative examples using several different methods. T URBU S TAT is an open-source package and we welcome community feedback and contributions.
  • 关键词:methods: data analysis;methods: statistical;turbulence
国家哲学社会科学文献中心版权所有